NAFEMS LE1 Benchmarck

This benchmark is extract from the Abaqus Benchmarks Manual.

1. Definition

We focus on the LE1 benchmarks in particular.

2. Running the case

The command line to run this case is

mpirun -np 4 feelpp_toolbox_solid --case "github:{path:toolboxes/solid/cases/NAFEMS-LE1}"
mpirun
Case option
--case "github:{path:toolboxes/solid/cases/NAFEMS-LE1}"

3. Data files

The case data files are available in Github here

3.1. Geometry

The geometry is given here by :

geo
Figure 1. 2D Geometry

3.2. Boundary conditions

We set:

  • uy=0 on DC

  • ux=0 on AB

  • ˉˉεn=1e7 on BC.

4. Inputs

We have the following parameters:

Table 1. Inputs
Name Value

E

210GPa

ν

0.3

ρ

7800kg/m2

5. Outputs

We compare the value of σyy at the point D. The reference value is 92.7MPa.

6. Results

Here are the verifications of the benchmarks: .Checkers Output

+---------------------------------------------------------------------------------------------------------+
| Checkers : solid                                                                                        |
+---------------------------------------------------------------------------------------------------------+
| +-----------+-----------------------------+--------------+--------------+--------------+--------------+ |
| | check     | name                        | measure      | reference    | error        | tolerance    | |
| +===========+=============================+==============+==============+==============+==============+ |
| | [success] | Points_pointD_expr_sigma_yy | 9.268058e+07 | 9.270000e+07 | 2.095100e-04 | 1.000000e-02 | |
| +-----------+-----------------------------+--------------+--------------+--------------+--------------+ |
+---------------------------------------------------------------------------------------------------------+

The value of σyy at the point D is 94.09MPa for 32000 dofs, which is 1.49 higher than the target.

One possibility to get a more accurate output is to use a mixed formulation, where the stress tensor would also be an unknown.

We now display the displacement field and the Vonmises stress field.

NafemsLE1 disp
Figure 2. Displacement field
NafemsLE1 vonmises
Figure 3. Vonmises