Numerical Experiments
1. Problem Statement
We have a geometry splitted in 9 subparts :
image::example-thermal-block-heat-transfer.png
Given \(\mu \in (\mu_1,...\mu_P) \in \mathcal{D}^\mu\equiv [\mu^{\text{min}},\mu^{\text{max}}]^P\), evaluate (recall that \(\ell = f\))
\(s(\mu) = f(u(\mu))]\) where \(u(\mu) \in X \equiv \{ v \in H^1(\Omega), v|_{\Gamma_{\text{top}}} = 0\}\) satisfies \(a(u(\mu), v; \mu) = f(v; \mu) \quad \forall v \in X\) we have \(P = 8\) and given \(1 < \mu_r < \infty\) we set \(\mu^{\mathrm{min}} = \dfrac{1}{\sqrt{\mu_r}},\quad \mu^{\mathrm{max}} =
\sqrt{\mu_r}\) such that \(\dfrac{\mu^{\mathrm{max}}}{\mu^{\mathrm{min}}}=\mu_r\).
Recall we are in the compliant case \(\ell = f\), we have \(f(v) = \displaystyle\int_{\Gamma_{0}} v\quad \forall v \in X\) and \(a(u,v;\mu) = \displaystyle\sum_{i=1}^{P} \mu_i \int_{\Omega_i} \nabla u \cdot \nabla v + 1 \int_{\Omega_{P+1}} \nabla u \cdot \nabla v \quad\forall u,\ v\ \in X\) where \(\Omega = \displaystyle\cup_{i=1}^{P+1} \Omega_i\).
The inner product is defined as follows \((u,v)_X = \displaystyle\sum_{i=1}^P \bar{\mu}_i \int_{\Omega_i}\nabla u \cdot \nabla v + 1 \int_{\Omega_{P+1}} \nabla u \cdot \nabla v\) where \(\bar{\mu}_i\) is a reference parameter. We have readily that \(a\) is
-
symmetric,
-
parametrically coercive \(0 < \dfrac{1}{\sqrt{\mu_r}} \leq \mathrm{min}(\mu_1/\bar{\mu}_1, \ldots, \mu_P/\bar{\mu}_P,1) \leq \alpha(\mu)\),
-
and continuous \(\gamma(\mu) \leq \mathrm{max}(\mu_1/\bar{\mu}_1, \ldots, \mu_P/\bar{\mu}_P,1) \leq \sqrt{\mu_r} < \infty\)
and the linear form \(f\) is bounded.
2. Affine decomposition
We obtain the affine decomposition \(a(u,v;\mu) = \displaystyle\sum_{q=1}^{P+1} \Theta^q(\mu) a^q(u,v)\) with \(\begin{aligned} \Theta^1(\mu) = \mu_1 & & a^1(u,v) = \int_{\Omega_1} \nabla u \cdot \nabla v\\ & \vdots & \\ \Theta^P(\mu) = \mu_P & & a^P(u,v) = \int_{\Omega_P} \nabla u \cdot \nabla v\\ \Theta^{P+1}(\mu) = 1 & & a^{P+1}(u,v) = \int_{\Omega_{P+1}} \nabla u \cdot \nabla v \end{aligned}\)
3. Results
-
Homogeneous parameters
image::33-max.png
image::33-min.png
-
Heteregeneous parameters
image::33-random.png
4. Thermal Block \(P=1\)
image::thermalblock-P1.png
We assume \(1/\mu^{\min}_1=\mu^{\max}_1=\sqrt{\mu_r}=10\) and choose \(\mathcal{N}=256\)
we set \(\bar{\mu}=1\) and have \(\Theta^1_a(\mu)=\mu_1,\, \Theta^2_a(\mu) = 1\). Thus, \(\Theta_a^{\min,\bar{\mu}}(\mu_1)=\min(\mu_1,1)\\ \Theta_a^{\max,\bar{\mu}}(\mu_1)=\max(\mu_1,1)\)
hence \(\theta^{\bar{\mu}}(\mu_1) = \max(\frac{1}{\mu_1},\mu_1)\) and \(\theta^{\bar{\mu}}(\mu_1) \leq\sqrt{\mu_r} \forall \mu_1 \in \mathcal{D}\).
Values in [RHP2008]
\(N\) | \(\Delta^s_{N,\mathrm{max}}(\mu)\) | \(\eta^s_{N,\mathrm{ave}}\) | \(\eta^s_{N,\mathrm{max}}\) |
---|---|---|---|
1 |
7.2084E+00 |
2.3417 |
3.3305 |
2 |
4.5371E–01 |
2.4858 |
3.6850 |
3 |
6.9652E–04 |
6.2195 |
9.8551 |
4 |
1.3744E–07 |
3.3219 |
7.2632 |
5 |
3.1140E–11 |
6.0789 |
7.0453 |
Note that: \(\eta^s_{N,\mathrm{max}}(\mu_1) \leq \eta^s_{\mathrm{max,UB}} \equiv \sqrt{\mu_r} = 10\)
-
Maximum output error bound: \(\Delta^s_{N,\mathrm{max}} = \max_{\mu \in \Xi_{\mathrm{train}}} \Delta^s_N(\mu)\)
-
Average output effectivity: \(\eta^s_{N,\mathrm{ave}} = \frac{1}{\Xi_\mathrm{train}}\sum_{\mu \in \Xi_{\mathrm{train}}} \eta^s_N(\mu)\)
-
Maximum output effectivity: \(\eta^s_{N,\mathrm{max}} = \max_{\mu \in \Xi_{\mathrm{train}}} \eta^s_N(\mu)\)
5. Example Thermal Block \(P=8\)
-
Configuration :
-
47 600 dofs;
-
Preconditionner : LU – Solver : MUMPS
-
\(\Xi : \) parameter sampling of dimension 1 000.
-
-
Plot \(\max_{\mu \in \Xi} \frac{ |s^{\mathcal{N}}(\mu)-s_N(\mu)|}{s^{\mathcal{N}}(\mu)}\)
image::Relative-error.png
Thermal Block \(P=8\)
-
More parameters there are, more rich the problem is;
-
Notations :
-
\(e^i(\mu)\) is the relative error on the output when \(i\) parameters vary.
-
image::Relative-error-2.png