A Posteriori Error Estimation
- 1. Motivations & Preliminaries
- 2. Bound theorems
- 2.1. Questions
- 2.2. A Posteriori Error Estimation: Requirements
- 2.3. \(u_N(\mu)\) : Error equation and residual dual norm
- 2.4. Dual norm of the residual
- 2.5. \(u_N(\mu)\) : Definitions of energy error bounds and effectivity
- 2.6. \(s_N(\mu)\) : output error bounds
- 2.7. Relative output error bounds
- 2.8. \(X\)-norm error bounds
- 2.9. Remarks on error bounds
- 3. Offline-Online decomposition
- 4. Sampling strategy: a Greedy algorithm
1. Motivations & Preliminaries
1.1. « Truth » Problem statement
Let \(\mu \in \mathcal{D}^{\mu}\), evaluate \(\displaystyle s (\mu) = \ell (u (\mu))\) where \(u (\mu) \in X\) satisfies \(a (u (\mu), v; \mu ) = f (v), \quad \forall \: v \in X\).
Assumptions :
-
linearity, coercivity, continuity
-
affine parameter dependence; and
-
compliance: \(\ell=f\), \(a\) symmetric
1.2. Reduced Basis Sample and Space
Parameter Samples: \(S_N = \{ \mu_1 \in \mathcal{D}^{\mu}, \ldots, \mu_N \in \mathcal{D}^{\mu} \}\quad 1 \leq N \leq N_{\mathrm{max}}\), with \(S_1 \subset S_2 \ldots S_{N_\mathrm{max}-1} \subset S_{N_\mathrm{max}} \subset \mathcal{D}^\mu\).
Lagrangian Hierarchical Space \(W_N = {\rm span} \: \{ \xi^n \equiv \underbrace{ u (\mu^n)}_{u^{\mathcal{N}} (\mu^n)}, n = 1, \ldots, N \}\), with \(W_1 \subset W_2 \ldots \subset W_{N_\mathrm{max}} \subset X^{\mathcal{N}} \subset{X}\)
1.3. Reduced basis approximation
Given \(\mu \in \mathcal{D}^{\mu} \) evaluate \(s_N (\mu) = f(u_N (\mu);\mu)\) where \(u_N (\mu) \in X_N\) satisfies \(a (u_N (\mu), v; \mu) = f(v;\mu), \ \forall \: v \in X_N\).
Recall:
-
RB Space: \(X_N=« \text{Gram-Schmidt} »(W_N)\)
-
\(u_N(\mu)\) unique (coercivity, continuity, linear dependence)
1.4. Coercivity and Continuity Constants
We assume \(a\) coercive and continuous
Recall that
-
coercivity constant \((0 < ) \alpha(\mu) \equiv \inf_{v\in X}\dfrac{a(v,v;\mu)}{||v||^2_X}\),
-
continuity constant \(\gamma(\mu) \equiv \sup_{w\in X} \sup_{v\in X}\dfrac{a(w,v;\mu)}{\|w\|_X \|v\|_X} ( < \infty)\)
Affine dependence and parametric coercivity We assume that \(a: X\times X \times \mathcal{D} \rightarrow \mathbb{R}\) is
-
affine : \(a(u,v;\mu) = \displaystyle\sum_{q=1}^{Q_a} \Theta^q_a(\mu)\ a^q( u, v ),\, \forall u,v \in X\)
-
and paraletrically coercive : \(\Theta^q_a(\mu) > 0\quad \forall \mu \in \mathcal{D}, \, 1 \leq q \leq Q_a\) and \(a^q(u,v) \geq 0\quad \forall u,v \in X, \, 1 \leq q \leq Q_a\)
1.5. Inner Products and Norms
-
energy inner product and associated norm (parameter dependant)
-
\(X\)-inner product and associated norm (parameter independant)
2. Bound theorems
2.1. Questions
-
What is the accuracy of \(u_N(\mu)\) and \(s_N(\mu)\) ? Online
-
What is the best value for \(N\) ? Offline/Online
-
\(N\) too large \(\Rightarrow\) computational inefficiency
-
\(N\) too small \(\Rightarrow\) unacceptable error
-
-
How should we build \(S_N\) ? is there an optimal construction ? Offline
-
Good approximation of the manifold \(\mathcal{M}\) through the RB space, but
-
need for well conditioned RB matrices
-
2.2. A Posteriori Error Estimation: Requirements
We shall develop the following error bounds \(\Delta_N(\mu)\) and \(\Delta^s_N(\mu)\) with the following properties
-
Rigorous : \(1 \leq N \leq N_{\mathrm{max}}\),
-
reasonably sharp \(1 \leq N \leq N_{\mathrm{max}}\)
-
efficient : Online cost depend only on \(Q\) and \(N\) and not \(\mathcal{N}\).
2.3. \(u_N(\mu)\) : Error equation and residual dual norm
Given our RB approximation \(u_N(\mu)\), we have \(e(\mu) \equiv u(\mu) - u_N(\mu)\) that satisfies \(a( e(\mu), v; \mu ) \ = \ r( u_N(\mu), v; \mu ), \forall v \in X\), where \(r( u_N(\mu), v; \mu ) = f(v) - a( u_N(\mu), v; \mu )\) is the residual. We have then from coercivity and the definitions above that
2.4. Dual norm of the residual
Given \(\mu \in \mathcal{D}^\mu\), the dual norm of \(r(u_N(\mu),\cdot;\mu)\) is defined as follows
where \(\hat{e}(\mu)\in X\) satisfies \((\hat{e}(\mu),v)_X = r(u_N(\mu),v;\mu)\)
The error residual equation can then be rewritten \(a( e(\mu), v; \mu ) \ = (\hat{e}(\mu),v)_X, \quad \forall v \in X\)
2.5. \(u_N(\mu)\) : Definitions of energy error bounds and effectivity
Given \(\alpha_\mathrm{LB}(\mu)\) a nonnegative lower bound of \(\alpha(\mu)\):
Denote \(\varepsilon_N(\mu) = \|\hat{e}(\mu)\|_X = \|r(u_N(\mu),v;\mu\|_{X'}\)
Remarks :
-
Rigorous : Left inequality ensures rigorous upper bound measured in \(||\cdot||_{X}\) , i.e. \(||e(\mu)||_{X} \leq \Delta_N(\mu),\ \forall \mu \in \mathcal{D}^\mu\)
-
Sharp : Right inequality states that \(\Delta_N(\mu)\) overestimates the « true » error by at most \(\gamma(\mu) / {\alpha_{{\mathrm{LB}}}}(\mu)\)
-
for \(a\) paralmetrically coercive and symmetric
2.6. \(s_N(\mu)\) : output error bounds
where \(\Delta^s_N (\mu) = {\Delta_N^{\mathrm{en}}}(\mu)^2\) and \(\eta^s_N(\mu)\equiv \frac{\Delta^s_N(\mu)}{s(\mu)-s_N(\mu)}\)
Rapid convergence of the error in the output : Note that the error in the output vanishes quadratically
2.7. Relative output error bounds
We define
-
the relative output error bound \(\Delta^{s,rel}_N (\mu) \equiv \frac{\|\hat{e}(\mu)\|^2_X}{ \alpha_\mathrm{lb}(\mu) s_N(\mu)}= \frac{\Delta_N^{\mathrm{en}}(\mu)^2}{s_N(\mu)}\)
-
the relative output effectivity \(\eta^{s,rel}_N(\mu)\equiv \frac{\Delta^{s,rel}_N(\mu)}{s(\mu)-s_N(\mu)/s(\mu)}\)
for \(\Delta^{s,rel}_N \leq 1\)
2.8. \(X\)-norm error bounds
We define
-
the relative output error bound \(\Delta_N (\mu) \equiv \frac{\|\hat{e}(\mu)\|_X}{\alpha_\mathrm{lb}(\mu)}\)
-
the relative output effectivity \(\eta_N(\mu)\equiv \frac{\Delta_N(\mu)}{\|e(\mu)\|_X}\)
2.9. Remarks on error bounds
-
The error bounds are rigorous upper bounds for the reduced basis error for any \(N = 1,\ldots,N_{max}\) and for all \(\mu \in \mathcal{D}\).
-
The upper bounds for the effectivities are
-
independent of \(N\) , and
-
independent of \(\mathcal{N}\) if \(\alpha_{\mathrm{lb}}(\mu)\) only depends on \(\mu\), and are thus stable with respect to RB and FEM refinement.
-
-
Results for energy norm (and \(X\)-norm) bound directly extend to noncompliant (& nonsymmetric) problems
-
if we choose an appropriate definition for the energy (and \(X\)) norm
-
3. Offline-Online decomposition
Denote \(\hat{e}(\mu)\in X\) \(||\hat{e}(\mu)||_X = \varepsilon_N(\mu) = ||r(u_N(\mu),\cdot;\mu)||_X\) such that \((\hat{e}(\mu),v)_X = -r(u_N(\mu),v;\mu), \quad \forall v \in X\).
And recall that \(-r(u_N(\mu),v;\mu) = f(v) - \displaystyle\sum_{q=1}^Q \sum_{n=1}^N\ \Theta^q(\mu)\ {u_N}_n(\mu)\ a^q( \zeta_n,v), \quad \forall v\ \in\ X\)
-
It follows next that \(\hat{e}(\mu)\in X\) satisfies
-
Observe then that the rhs is the sum of products of parameter dependent functions and parameter independent linear functionals, thus invoking linear superposition
where
-
\(\mathcal{C} \in X\) satisfies \((\mathcal{C},v) = f(v), \forall v \in X\)
-
\(\mathcal{L} \in X\) satisfies \((\mathcal{L}^q_n,v)_X = -a^q(\zeta_n,v), \forall v \in X, \, 1 \leq n \leq N, 1 \leq q \leq Q\) which are parameter independent problems
3.1. Error bounds
From a previous equation, we get
Remark In (Error bound decomposition), \(||\hat{e}(\mu)||_X^2\) is the sum of products of
-
parameter dependant (simple/known) functions and
-
parameter independant inner-product,
the offline-online for the error bounds is now clear.
3.2. Steps and complexity
Offline :
-
Solve for \(\mathcal{C}\) and \(\mathcal{L}^q_n,\ 1 \leq n \leq N,\ 1 \leq q \leq Q\)
-
Form and save \((\mathcal{C},\mathcal{C})_X\), \(( \mathcal{C}, \mathcal{L}^q_n)_X\) and \(( \mathcal{L}^{q}_{n}, \mathcal{L}^{q'}_{n'})_X\), \(1 \leq n,n' \leq N,\ 1 \leq q, q' \leq Q\)
Online :
-
Given a new \(\mu \in \mathcal{D}^\mu\)
-
Evaluate the sum \(||\hat{e}(\mu)||_X^2\) (Error bound decomposition) in terms of \(\Theta^q(\mu)\) and \({u_N}_n(\mu)\)
-
Complexity in \(O(Q^2 N^2)\) independent of \(\mathcal{N}\)
4. Sampling strategy: a Greedy algorithm
4.1. Offline-Online Scenarii
Offline : Given a tolerance \(\tau\), build \(S_N\) and \(W_N\) such that \(\forall \ \mu\ \in \mathcal{P} \equiv \mathcal{D}^{\mu} \ , \ \Delta_N(\mu) < \tau\)
Online : Given \(\mu\) and a tolerance \(\tau\), find \(N^*\) and thus \(s_{N^*}(\mu)\) such that \(N^* = \operatorname{arg\ max}_N\ \left( \Delta_{N}(\mu) < \tau \right)\), or given \(\mu\) and a max execution time \(T\), find \(N^*\) and thus \(s_{N^*}(\mu)\) s.uch that \(N^* = \operatorname{arg\ min}_N\ \left( \Delta_{N}(\mu) \mbox{ and execution time } < T \right)\)
4.2. \(S_N\) and \(W_N\) Generation Strategies
Offline Generation
-
Input : a tolerance \(\epsilon\), set \(N = 0\) and \(S_0 = \emptyset\)
-
While \(\Delta_N^{\mathrm{max}}> \epsilon\)
-
\(N = N+1\)
-
If N == 1; then Pick ((log-)randomly) \(\mu_1 \in \mathcal{D}^\mu\)
-
Build \(S_N:= \{ \mu_N \} \cup S_{N-1}\)
-
Build \(W_N:= \{ \xi = u(\mu_N) \} \cup W_{N-1}\)
-
Compute \(\Delta_N^{\mathrm{max}}:= \mathrm{max}_{\mu \in \mathcal{D}^\mu}\, \Delta_N(\mu)\)
-
\(\mu^{N+1} := \operatorname{arg\ max}_{\mu\in\mathcal{D}^\mu} \Delta_N(\mu)\)
-
-
End While
Condition number : recall that the \(\zeta_n\) are orthonormalizes, this ensures that the condition number will stay bounded by \(\gamma(\mu)/\alpha(\mu)\).
4.3. Online Algorithm I
-
Input : \(\mu \in \mathcal{D}^\mu\)
-
Compute \((s_{N^{*}}(\mu), \Delta_{N^{*}}(\mu))\) such that \(\Delta_{N^{*}}(\mu) < \tau.\)
-
\(N = 2\)
-
While \(\Delta_N(\mu) > \tau\)
-
Compute \((s_N(\mu), \Delta_N(\mu))\) using \((S_N,W_N)\)
-
\(N = N * 2\) use the (very) fast convergence properties of RB
-
-
End While
4.4. Online Algorithm II
-
While \(i \leqslant \mathrm{Imax} \gg 1\)
-
Pick log-randomly \(\mu \in \mathcal{D}^\mu\)
-
Store in table \(\mathcal{T}, \Delta_N(\mu)\) if worst case for \(N=1,..., {N^{\mathrm{max}}}\)
-
\(i = i + 1\)
-
-
End While
-
Given \(\mu \in \mathcal{D}^\mu\), compute \((s_{N^{*}}(\mu), \Delta_{N^{*}}(\mu))\) such that \(\Delta_{N^{*}}(\mu) < \tau.\)
-
\(N^{*} := \mathrm{arg} \mathrm{max}_{\mathcal{T}}\, {\Delta_N(\mu) \, < \, \tau}\)
-
Use \(W_{N^{*}}\) to compute \((s_{N^{*}}(\mu),\Delta_{N^{*}}(\mu))\)