1. Geometry
1.1. Points
1.1.1. Current Point:
Feel++ Keyword |
Math Object |
Description |
Dimension |
|
\(\overrightarrow{P}\) |
\((P_x, P_y, P_z)^T\) |
\(d \times 1\) |
|
\(P_x\) |
\(x\) coordinate of \(\overrightarrow{P}\) |
\(1 \times 1\) |
|
\(P_y\) |
\(y\) coordinate of \(\overrightarrow{P}\) (value is 0 in 1D) |
\(1 \times 1\) |
|
\(P_z\) |
\(z\) coordinate of \(\overrightarrow{P}\) (value is 0 in 1D and 2D) |
\(1 \times 1\) |
1.1.2. Element Barycenter Point:
Feel++ Keyword | Math Object | Description | Dimension |
---|---|---|---|
|
\(\overrightarrow{C}\) |
\((C_x, C_y, C_z)^T\) |
\(d \times 1\) |
|
\(C_x\) |
\(x\) coordinate of \(\overrightarrow{C}\) |
\(1 \times 1\) |
|
\(C_y\) |
\(y\) coordinate of \(\overrightarrow{C}\) (value is 0 in 1D) |
\(1 \times 1\) |
|
\(C_z\) |
\(z\) coordinate of \(\overrightarrow{C}\) (value is 0 in 1D and 2D) |
\(1 \times 1\) |
1.1.3. Normal at Current Point:
Feel++ Keyword |
Math Object |
Description |
Dimension |
|
\(\overrightarrow{N}\) |
\((N_x, N_y, N_z)^T\) |
\(d \times 1\) |
|
\(N_x\) |
\(x\) coordinate of \(\overrightarrow{N}\) |
\(1 \times 1\) |
|
\(N_y\) |
\(y\) coordinate of \(\overrightarrow{N}\) (value is 0 in 1D) |
\(1 \times 1\) |
|
\(N_z\) |
\(z\) coordinate of \(\overrightarrow{N}\) (value is 0 in 1D and 2D) |
\(1 \times 1\) |
1.1.4. Extra informations on elements and face of element:
Feel++ Keyword | Math Object | Description | Dimension |
---|---|---|---|
|
\(h\) |
maximum edge size in element |
1 |
|
\(h_{\mathrm{min}}\) |
minimum edge size in element |
1 |
|
\(h_{\mathrm{f}}\) |
maximum edge size of current face |
1 |
|
stem:[ |
\cdot |
] |
measure of the current element |
1 |
|
stem:[ |
\cdot |
] |
measure of the current face |
1 |
|
id of the current element |
1 |
|
|
marker of the current element |
1 |
|
|
marker2 of the current element |
1 |
|
|
marker of the face in the current element when iterating over faces |
1 |
|
|
pid of the current element |
1 |
1.2. Geometric Transformations
1.2.1. Jacobian Matrix
You can access to the jacobian matrix, \(J\), of the geometric
transformation, using the keyword: J()
There are some tools to
manipulate this jacobian.
Feel++ Keyword |
Math Object |
Description |
|
\(\det(J)\) |
Determinant of jacobian matrix |
|
\((J^{-1})^T\) |
Transposed inverse of jacobian matrix |