Creating a mesh
We start with setting the Feel++ environment and loading the Feel++ library.
import feelpp.core as fppc
import sys
app = fppc.Environment(["myapp"],config=fppc.localRepository(""))
Results
1. Load a mesh from a geo
or msh
file
fppc.mesh(dim=2, geo=1, realdim=2, worldComm=None)
: create a mesh.
The mesh is of topological dimension dim
, in real dimension realdim
with geometric order geo
.
The mesh is configured with a WorldComm
which provides the parallel process layout.
Keyword arguments:
-
dim
: the topological dimension (default:2
) -
geo
: the geometrical order (default:1
) -
realdim
: the real dimension (default:2
) -
worldComm
: the parallel communicator for the mesh (default:Environment::worldCommPtr()
)
fppc.load(m, path, size) → fppc._mesh.Mesh_S1DG1R1
: load a mesh from a file
-
m
declared with the functionmesh
above -
path
(string
) path to the geometry (withgeo
ormsh
format) -
size
(float
) size of the meshed geometry (if it is not meshed yet)
geo=fppc.download( "github:{repo:feelpp,path:feelpp/quickstart/laplacian/cases/feelpp2d/feelpp2d.geo}", worldComm=app.worldCommPtr() )[0]
print("geo file: {}".format(geo))
mesh = fppc.load(fppc.mesh(dim=2,realdim=2), geo, 0.1)
Results
geo file: /scratch/prudhomm/actions-runner/_work/book.feelpp.org/book.feelpp.org/feelppdb/downloads/feelpp2d.geo
2. Usage
The mesh
provides the Feel++ data structures in Python:
The following methods are to use on the mesh object (mesh
in the previous example) :
2.1. Mesh information :
-
dimension(self) → int
: get topological dimension -
hAverage(self) → float
: get the average edge length of the mesh -
hMax(self) → float
: get the maximum edge length of the mesh -
hMin(self) → float
: get the minimum edge length of the mesh -
measure(self, parallel: bool = True) → float
: get the measure of the mesh (which is equal to \(\int_\Omega 1\)) -
measureBoundary(self) → float
: get the measure of the boundary of the mesh (which is equal to \(???\)) -
numGlobalEdges(self) → int
: get the number of edges over the whole mesh, requires communication if the mesh is parallel -
numGlobalElements(self) → int
: get the number of elements over the whole mesh, requires communication if the mesh is parallel -
numGlobalFaces(self) → int
: get the number of faces over the whole mesh, requires communication if the mesh is parallel -
numGlobalPoints(self) → int
: get the number of points over the whole mesh, requires communication if the mesh is parallel -
realDimension(self) → int
: get real dimension -
updateMeasures(self) → None
: update the measures of the mesh
Here is an example of how to use the mesh information:
print(f"dimention: {mesh.dimension()}")
print(f"number of elements: {mesh.numGlobalElements()}")
print(f"number of faces: {mesh.numGlobalFaces()}")
print(f"hmin: {mesh.hMin()}")
print(f"havg: {mesh.hAverage()}")
print(f"hmax: {mesh.hMax()}")
print(f"measure: {mesh.measure()}")
print(f"measure of boundary: {mesh.measureBoundary()}")
Results
dimention: 2 number of elements: 5130 number of faces: 8000 hmin: 0.07738894997584338 havg: 0.10266129894318482 hmax: 0.13695416558140552 measure: 20.79999999999995 measure of boundary: 1496.2887158543454
2.2. Test relation between meshes :
-
isParentMeshOf(self: fppc._mesh.Mesh_S3DG1R3, arg0: fppc._mesh.Mesh_S3DG1R3) → bool
: is the mesh the parent mesh of another mesh -
isRelatedTo(self: fppc._mesh.Mesh_S3DG1R3, arg0: fppc._mesh.Mesh_S3DG1R3) → bool
: is the mesh related to another mesh -
isSiblingOf(self: fppc._mesh.Mesh_S3DG1R3, arg0: fppc._mesh.Mesh_S3DG1R3) → bool
: is the mesh a sibling of another mesh -
isSubMeshFrom(self: fppc._mesh.Mesh_S3DG1R3, arg0: fppc._mesh.Mesh_S3DG1R3) → bool
: is the mesh a sub mesh of another mesh
2.3. Export and load mesh on HDF5 format
-
saveHDF5(self, name: str) → None
: save mesh to H5 file -
loadHDF5(self, name: str) → None
: load mesh from H5 file
3. Ranges
elements
-
fppc.elements(mesh)
: get iterator over the elements of the mesh markedelements
-
-
fppc.markedelements(mesh, tag: str)
: get iterator over the marked elements of the mesh -
fppc.markedelements(mesh, marker: str)
: return the range of elements of the mesh with marker -
fppc.markedelements(mesh, markers: List[str])
: return the range of elements of the mesh with markers
-
faces
-
fppc.faces(mesh)
: get iterator over the faces of the mesh markedfaces
-
-
fppc.markedfaces(mesh, marker: str)
: return the range of facets of the mesh with marker -
markedfaces(mesh, markers: List[str])
: return the range of facets of the mesh with marker
-
boundaryfaces
-
fppc.boundaryfaces(mesh)
: get iterator over the boundary faces of the mesh
A first example with ranges:
r = fppc.elements(mesh)
print("mesh elts:", fppc.nelements(r))
r = fppc.boundaryfaces(mesh)
print("mesh boundary faces:", fppc.nelements(r))
Results
mesh elts: 5130 mesh boundary faces: 610
A second more interesting example with ranges uses integrate to compute integrals of expressions over the mesh:
from feelpp.core.integrate import integrate
i1 = integrate(range=fppc.elements(mesh),expr="sin(x+y):x:y")
i2 = integrate(range=fppc.boundaryfaces(mesh),expr="x*nx+y*ny+z*nz:x:y:z:nx:ny:nz")
i3 = integrate(range=fppc.markedelements(mesh, "marker"), expr="1")
print(f"i1 = {i1}, i2 = {i2}, i3 = {i3}")
Results
i1 = [3.24283419], i2 = [41.6], i3 = [0.]