Operators
1. Operations
You can use the usual operations and logical operators.
Feel++ Keyword |
Math Object |
Description |
|
\( f+g\) |
tensor sum |
|
\( f-g\) |
tensor substraction |
|
\( f*g\) |
tensor product |
|
\( f/g\) |
tensor tensor division (\(g\) scalar field) |
|
\( f<g\) |
element wise less |
|
\( f\leq g\) |
element wise less or equal |
|
\( f>g\) |
element wise greater |
|
\( f \geq g\) |
element wise greater or equal |
|
\( f==g\) |
element wise equal |
|
\( f \neq g\) |
element wise not equal |
|
\( -g\) |
element wise unary minus |
|
\( f\) and \(g\) |
element wise logical and |
|
\( f\) or \(g\) |
element wise logical or |
|
\( !g\) |
element wise logical not |
2. Differential Operators
Feel++ finit element language use test and trial functions. Keywords are different according to the kind of the manipulated function.
Usual operators are for test functions.
t-operators for trial functions.
v-operators to get an evaluation.
Suppose that \( f \in X_h \) reads
where \( X_h = \mathrm{span}\{ \phi_i, i=1,\ldots,\mathcal{N}\} \) is a finite element space.
Feel++ Keyword |
Math Object |
Description |
Rank |
Dimension |
|
\( \{\phi_i\} \) |
test function |
rank\( (f(\overrightarrow{x})) \) |
\( m \times p \) |
|
\( \{\phi_i\} \) |
trial function |
rank\( (f(\overrightarrow{x}))\) |
\( m \times p \) |
|
\( f \) |
evaluation function |
rank\( (f(\overrightarrow{x})) \) |
\( m \times p \) |
|
\( \nabla f \) |
gradient of test function |
rank\( (f(\overrightarrow{x}))+1 \) |
\(m \times n \) \(p=1\) |
|
\( \nabla f \) |
grdient of trial function |
rank\( (f(\overrightarrow{x}))+1 \) |
\(m \times n \) \(p=1\) |
|
\( \nabla f \) |
evaluation function gradient |
rank\((f(\overrightarrow{x}))+1\) |
\(m \times n \) \(p=1\) |
|
\( \nabla\cdot f \) |
divergence of test function |
rank\( (f(\overrightarrow{x}))-1 \) |
\( 1 \times 1 \) |
|
\( \nabla\cdot f \) |
divergence of trial function |
rank\( (f(\overrightarrow{x}))-1 \) |
\( 1 \times 1 \) |
|
\( \nabla\cdot f \) |
evaluation function divergence |
rank\( (f(\overrightarrow{x}))-1 \) |
\( 1 \times 1 \) |
|
\( \nabla\times f \) |
curl of test function |
1 |
\( n \times 1 \) \( m=n \) |
|
\( \nabla\times f \) |
curl of trial function |
1 |
\( n \times 1 \) \( m=n \) |
|
\( \nabla\times f \) |
evaluation function curl |
1 |
\( n \times 1 \) \( m=n \) |
|
\( \Delta f \) |
laplacian of test function |
0 |
\( 1 \times 1 \) \( m=p=1 \) |
|
\( \Delta f \) |
laplacian of trial function |
0 |
\( 1 \times 1 \) \( m=p=1 \) |
|
\( \Delta f \) |
laplacian of the function \(f\) |
0 |
\( 1 \times 1 \) \( m=p=1 \) |
|
\( \nabla^2 f \) |
hessian of test function |
2 |
\( n \times n \) \( m=p=1 \) |
|
\( \mathrm{trace}( f ) \) |
trace of test matrix field |
0 |
\( 1 \times 1 \) \( m=p=d \) |
|
\( \mathrm{trace}( f ) \) |
trace of trial matrix field |
0 |
\( 1 \times 1 \) \( m=p=d \) |
|
\( \mathrm{trace}( f ) \) |
trace of matrix field \( f \) |
0 |
\( 1 \times 1 \) \( m=p=d \) |
|
\( f \cdot \overrightarrow{N} \) |
normal component of test function |
rank\((f(\overrightarrow{x}))-1\) |
|
|
\( f \cdot \overrightarrow{N} \) |
normal component of trial function |
rank\((f(\overrightarrow{x}))-1\) |
|
|
\( f \cdot \overrightarrow{N} \) |
normal component of function \( f \) |
rank\((f(\overrightarrow{x}))-1\) |
|
|
\( \nabla f \cdot \overrightarrow{N} \) |
normal derivative of test function |
0 |
\( 1 \times 1 \) \( m=p=1 \) |
|
\( \nabla f \ \overrightarrow{N} \) |
normal derivative of test function |
1 |
\( m \times 1 \) \(p=1 \) |
|
\( \nabla f \cdot \overrightarrow{N} \) |
normal derivative of trial function |
0 |
\( 1 \times1 \) \(m=p=1\) |
|
\( \nabla f \ \overrightarrow{N} \) |
normal derivative of trial function |
1 |
\( m \times 1 \) \(p=1\) |
|
\( \nabla f \cdot \ \overrightarrow{N} \) |
evaluation of normal derivative |
0 |
\( 1 \times 1 \) \(m=p=1\) |
|
\( \nabla f \ \overrightarrow{N} \) |
evaluation of normal derivative |
1 |
\( m \times 1 \) \(p=1\) |
|
\( \nabla f \cdot \overrightarrow{i} \) |
derivative of test function in \( x \) |
0 |
\( 1 \times 1 \) \( m=p=1 \) |
|
\( \nabla f \cdot \overrightarrow{j} \) |
derivative of test function in \( y \) |
0 |
\( 1 \times 1 \) \( m=p=1 \) |
|
\( \nabla f \cdot \overrightarrow{k} \) |
derivative of test function in \( z \) |
0 |
\( 1 \times 1 \) \( m=p=1 \) |
3. Two Valued Operators
Feel++ Keyword |
Math Object |
Description |
Rank |
Dimension |
|
\( f=f_0\overrightarrow{N_0}+f_1\overrightarrow{N_1} \) |
jump of test function |
0 |
\( n \times 1 \) \( m=1 \) |
|
\( \overrightarrow{f}=\overrightarrow{f_0}\cdot\overrightarrow{N_0}+\overrightarrow{f_1}\cdot\overrightarrow{N_1} \) |
jump of test function |
0 |
\( 1 \times 1 \) \( m=2 \) |
|
\( f=f_0\overrightarrow{N_0}+f_1\overrightarrow{N_1} \) |
jump of trial function |
0 |
\( n \times 1 \) \( m=1 \) |
|
\( \overrightarrow{f}=\overrightarrow{f_0}\cdot\overrightarrow{N_0}+\overrightarrow{f_1}\cdot\overrightarrow{N_1} \) |
jump of trial function |
0 |
\( 1 \times 1 \) \( m=2 \) |
|
\( f=f_0\overrightarrow{N_0}+f_1\overrightarrow{N_1} \) |
jump of function evaluation |
0 |
\( n \times 1 \) \( m=1 \) |
|
\( \overrightarrow{f}=\overrightarrow{f_0}\cdot\overrightarrow{N_0}+\overrightarrow{f_1}\cdot\overrightarrow{N_1} \) |
jump of function evaluation |
0 |
\( 1 \times 1 \) \( m=2 \) |
|
\( {f}=\frac{1}{2}(f_0+f_1) \) |
average of test function |
rank \( ( f(\overrightarrow{x})) \) |
\( n \times n \) \(m=n\) |
|
\( {f}=\frac{1}{2}(f_0+f_1) \) |
average of trial function |
rank \( ( f(\overrightarrow{x})) \) |
\(n \times n \) \(m=n\) |
|
\( {f}=\frac{1}{2}(f_0+f_1) \) |
average of function evaluation |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times n \) \(m=n\) |
|
\( f_0 \) |
left test function |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times n \) \( m=n \) |
|
\( f_0 \) |
left trial function |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times n \) \( m=n \) |
|
\( f_0 \) |
left function evaluation |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times n \) \( m=n \) |
|
\( f_1 \) |
right test function |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times n \) \( m=n \) |
|
\( f_1 \) |
right trial function |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times n \) \( m=n \) |
|
\( f_1 \) |
right function evaluation |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times n \) \( m=n \) |
|
\( \max(f_0,f_1) \) |
maximum of right and left test function |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times p \) |
|
\( \max(f_0,f_1) \) |
maximum of right and lef trial function |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times p \) |
|
\( \max(f_0,f_1) \) |
maximum of right and left function evaluation |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times p \) |
|
\( \min(f_0,f_1) \) |
minimum of right and left test function |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times p \) |
|
\( \min(f_0,f_1) \) |
minimum of right and left trial function |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times p \) |
|
\( \min(f_0,f_1) \) |
minimum of right and left function evaluation |
rank\( ( f(\overrightarrow{x})) \) |
\( n \times p \) |