### 1. Integrals

Feel++ provide the integrate() function to define integral expressions which can be used to compute integrals, define linear and bi-linear forms.

#### 1.1. Interface

``  integrate( _range, _expr, _quad, _geomap );``

Please notice that the order of the parameter is not important, these are `boost` parameters, so you can enter them in the order you want. To make it clear, there are two required parameters and 2 optional and they of course can be entered in any order provided you give the parameter name. If you don’t provide the parameter name (that is to say `_range` = or the others) they must be entered in the order they are described below.

Required parameters:

• `_range` = domain of integration

• `_expr` = integrand expression

Optional parameters:

• `_quad` = quadrature to use instead of the default one. Several ways are possible to pass the quadrature order for backward compatibility

 API Example Explanation Version `_quad=` `_quad=5` Pass the quadrature order as an integer, the default quadrature is used v0.105 `_quad=im()` `_quad=im(5)` Pass the default quadrature formula on a triangle to integrate exactly order 5 polynomials v0.105 `_quad=im(mesh,)` `_quad=im(mesh,5)` Pass the default quadrature formula on a mesh `mesh` to integrate exactly order 5 polynomials v0.105 `_quad=_Q()` `_quad=_Q<5>()` Pass the quadrature order at compile time to integrate exactly order 5 polynomials. It will be deprecated in a future release up to v0.105
 Starting from v0.105, quadratures are built at runtime and no more at compile time which means that quadrature orders can be adjusted dynamically, e.g from a command line option
• `_geomap` = type of geometric mapping to use, that is to say:

 Feel Parameter Description `GEOMAP_HO` High order approximation (same of the mesh) `GEOMAP_OPT` Optimal approximation: high order on boundary elements order 1 in the interior `GEOMAP_01` Order 1 approximation (same of the mesh)

#### 1.2. Example

From `doc/manual/tutorial/dar.cpp`

``````form1( ... ) = integrate( _range = elements( mesh ),
_expr = f*id( v ) );``````

From `doc/manual/tutorial/myintegrals.cpp`

``````  // compute integral f on boundary
double intf_3 = integrate( _range = boundaryfaces( mesh ),
_expr = f );``````

From `doc/manual/advection/advection.cpp`

``````  // using default quadrature
form2( _test = Xh, _trial = Xh, _matrix = D ) +=
integrate( _range = internalfaces( mesh ),
_expr = ( averaget( trans( beta )*idt( u ) ) * jump( id( v ) ) )
+ penalisation*beta_abs*( trans( jumpt( trans( idt( u ) )) )
*jump( trans( id( v ) ) ) ),
_geomap = geomap );
// use deprecated _Q
form2( _test = Xh, _trial = Xh, _matrix = D ) +=
integrate( _range = internalfaces( mesh ),
_expr = ( averaget( trans( beta )*idt( u ) ) * jump( id( v ) ) )
+ penalisation*beta_abs*( trans( jumpt( trans( idt( u ) )) )
*jump( trans( id( v ) ) ) ),
_geomap = geomap );``````

From `doc/manual/laplacian/laplacian.cpp`

`````` auto l = form1( _test=Xh, _vector=F );
l = integrate( _range = elements( mesh ),
_expr=f*id( v ) ) +
integrate( _range = markedfaces( mesh, "Neumann" ),
_expr = nu*gradg*vf::N()*id( v ) );``````

### 2. Computing my first Integrals

This part explains how to integrate on a mesh with Feel++ (source `doc/manual/tutorial/myintegrals.cpp` ).

Let’s consider the domain $\Omega=[0,1]^d$ and associated meshes. Here, we want to integrate the following function

\begin{aligned} f(x,y,z) = x^2 + y^2 + z^2 \end{aligned}

on the whole domain $\Omega$ and on part of the boundary $\Omega$.

There is the appropriate code:

``````int
main( int argc, char** argv )
{
// Initialize Feel++ Environment
Environment env( _argc=argc, _argv=argv,
_desc=feel_options(),
_author="Feel++ Consortium",
_email="feelpp-devel@feelpp.org" ) );

// create the mesh (specify the dimension of geometric entity)
auto mesh = unitHypercube<3>();

// our function to integrate
auto f = Px()*Px() + Py()*Py() + Pz()*Pz();

// compute integral of f (global contribution)
double intf_1 = integrate( _range = elements( mesh ),
_expr = f ).evaluate()( 0,0 );

// compute integral of f (local contribution)
double intf_2 = integrate( _range = elements( mesh ),
_expr = f ).evaluate(false)( 0,0 );

// compute integral f on boundary
double intf_3 = integrate( _range = boundaryfaces( mesh ),
_expr = f ).evaluate()( 0,0 );

std::cout << "int global ; local ; boundary" << std::endl
<< intf_1 << ";" << intf_2 << ";" << intf_3 << std::endl;
}``````