1. Mean value of a function

Let \(f\) a bounded function on domain \(\Omega\). You can evaluate the mean value of a function thanks to the mean() function :

\[\bar{f}=\frac{1}{|\Omega|}\int_\Omega f=\frac{1}{\int_\Omega 1}\int_\Omega f\]

1.1. Interface

  mean( _range, _expr, _quad, _geomap );

Required parameters:

  • _range = domain of integration

  • _expr = mesurable function

Optional parameters:

  • _quad = quadrature to use.

    • Default = _Q<integer>()

  • _geomap = type of geometric mapping.

    • Default = GEOMAP_OPT

1.2. Example

Stokes example using mean